

Thermodynamics of Energy Conversion and Storage

Prof. Dr. Andreas ZÜTTEL

Assistant: Yasemen Kuddusi

EXERCISES 1

1) Describe the forms of work and heat you know, e.g. potential energy $W = m \cdot g \cdot h$ or heat capacity $Q = m \cdot c \cdot \Delta T$. Make an example to each form with the corresponding quantity.

Heat:

latent heat: Q_m / Melting of ice $\Delta H_m(H_2O) = 333.55 \text{ J/g}$ and Evaporation of water $\Delta H_m(H_2O) = 2257 \text{ J/g}$

heat capacity: $Q = m \cdot c \cdot T$ / Heat capacity of water $c_p(H_2O) = 4.187 \text{ J/(g \cdot K)}$

heat from a exothermic reaction: $\Delta H / C + O_2 \rightarrow CO_2 \Delta H_f(CO_2) = -393.509 \text{ kJ/mol}$

Work:

kinetic energy: $W = 0.5 \cdot m \cdot v^2 / W = 0.5 \cdot 100 \text{ kg} \cdot (10 \text{ m/s})^2 = 5000 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2} = 5 \text{ kJ}$ (Person on bicycle with 36 km/h)

electrical energy: $W = I \cdot U \cdot t / W = 240 \text{ V} \cdot 10 \text{ A} \cdot 0.05 \text{ h} = 120 \text{ Wh}$ (Heating 1 liter of water from 10° to 100°C)

potential energy: $W = m \cdot g \cdot h / W = 100 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 1200 \text{ m} = 1200 \text{ kJ}$ (hiking 1200m uphill)

Expansion work: $W = p \cdot V / W = 1 \cdot 10^6 \cdot 0.001 \text{ m}^3 = 1000 \text{ J}$ (Cylinder with 10 bar and 1 liter Volume change)

2) Calculate the energy consumption of an average human (J/day) and convert into power (Watts).

Energy consumption = Food + Oil + Gas + Coal + Products

IEA report for the countries and the world: $14'000 \text{ Mtoe}/(\text{world and year}) = 14 \cdot 10^3 \cdot 4.186 \cdot 10^{16} \text{ J}/(7 \cdot 10^9 \cdot 365) = 5.86 \cdot 10^{20} \text{ J}/(7 \cdot 10^9 \cdot 365) = 229 \text{ MJ/day} = 2.65 \text{ kW}$

3) Compare in view of energy and entropy the heating of 1kg of Water from 10°C to 100°C by using coal fire (800°C).

$Q = 1 \text{ kg} \cdot 4.187 \text{ (kJ/kg \cdot K)} \cdot (373 - 283) \text{ K} = 377 \text{ kJ} = 377 \text{ kW} \cdot \text{s} = 105 \text{ Wh}$

Energy from coal: $m = 0.105 \text{ kWh} / 9 \text{ kWh/kg} = 12 \text{ g}$

Electricity from coal power station: $m = 0.105 \text{ kWh} / 9 \text{ kWh/kg} / 25\% = 48 \text{ g}$

All energy is in the form of heat, therefore, the entropy change is proportional to the energy used.

$$\Delta S = \int_i^f \frac{dQ}{T} = \int_{T_i}^{T_f} \frac{mc dT}{T} = m \ln \frac{T_f}{T_i} = 1 \text{ kg} \cdot 4.187 \text{ (kJ/kg \cdot K)} \cdot \ln \frac{373}{283} = 1156 \text{ J/K}$$

4) Calculate the Exergy and Anergy of coal fire (800°C), in the steam entering the turbine (400°C), in boiling hot water (100°C) and in a heated room (22°C) when the temperature of the environment is at 15°C.

$$Exergy = Q \cdot \Delta T / T_h$$

coal fire (800°C): Exergy = $1 - 288/1073 = 73.2\%$, Anergy = $100\% - 73.2\% = 26.8\%$

steam in turbine (400°C): Exergy = $1 - 288/673 = 57.2\%$, Anergy = $100\% - 57.2\% = 42.8\%$

hot water (100°C): Exergy = $1 - 288/373 = 22.8\%$, Anergy = $100\% - 22.8\% = 77.2\%$

heated room (22°C): Exergy = $1 - 288/295 = 2.3\%$, Anergy = $100\% - 2.3\% = 97.6\%$

5) Calculate the primary energy necessary and the increase of entropy for drinking a cup of tea. Describe the energy chain from primary to usable energy and all the conversion steps.

Primary energy: Coal 100% ($Q = 0.08 \text{ kWh}$)

Conversion: fire 100%, 1500°C

Secondary energy: steam 90%, 500°C

Conversion: turbine and generator 30%

Tertiary energy: electricity 30%

Conversion: water heater 30%

Quaternary energy: hot water 25%, 100°C ($Q = 0.02 \text{ kWh}$)

$$Q = 0.2 \text{ kg} \cdot 4.187 \text{ (kJ/kg·K)} \cdot (373 - 283) / (3.6 \cdot 10^3) = 0.02 \text{ kWh}$$

$$\Delta S = m c \ln \frac{T_f}{T_i} = 0.2 \text{ kg} \cdot 4.187 \text{ (kJ/kg·K)} \cdot \ln(373 / 283) = 231 \text{ J/K}$$